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ABSTRACT 

 

Understanding the mechanisms by which transcriptional regulatory networks (TRNs) 

change through evolution is a fundamental problem. Here we analyze this question using data 

from Escherichia coli and Bacillus subtilis, finding that paralogy relationships are insufficient to 

explain the global or local role observed for transcription factors (TFs) within regulatory 

networks. Our results provide a picture in which DNA-binding specificity, a molecular property 

that can be measured in different ways, is a predictor of the role of transcription factors. In 

particular, we observe that global regulators consistently display low binding specificities, while 

displaying comparatively higher expression values in microarray experiments. In addition, in 

this work we find a strong negative correlation between binding specificity and the number of 

co-regulators which help coordinate genetic expression at a genomic scale. A close look at 

several orthologous TFs, including FNR, a regulator found to be global in E. coli and local in B. 

subtilis, confirms the diagnostic value of specificity in order to understand their regulatory 

function, and also highlights the importance of evaluating the metabolic and ecological 

relevance of effectors as another variable in the evolutionary equation of regulatory networks. 

Finally, a general model is presented that integrates some evolutionary forces and molecular 

properties, aiming to explain how regulons grow and shrink, as bacteria tune their regulation to 

increase adaptation.  

 

 

 

Keywords: transcription, regulatory network, binding specificity, global regulator, paralogy 
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INTRODUCTION 

The expression of genes can be controlled by transcriptional regulatory mechanisms in response 

to cellular stimuli. Transcriptional regulation in prokaryotes depends generally upon the 

recognition of specific DNA operator sites (bsDNA) by transcription factors (TFs). These 

protein-DNA interactions affect the synthesis of messenger RNA molecules of target genes 

(TG), which can be activated or repressed. Overall, the set of transcriptional regulatory 

interactions in a given organism is often called Transcriptional Regulatory Network (TRN). 

Genomic and statistical analysis of TRNs has shown that transcriptional proteins have a 

differential connectivity, in which a small set of TFs regulates a much larger set of TGs 
1; 2; 3

. 

Even though different criteria have been proposed to define the property of connectivity 
4
, it is 

possible to assign TFs one of two functional roles, being either local or global regulators. On the 

basis of the number of TGs that a TF might regulate and additional features such as the different 

sigma-classes of promoters, the number of co-regulators and the number of conditions, highly 

connected TFs are called global regulators. In contrast, a large proportion of TFs in a network 

affects the expression of only one or few genes. These are called local regulators 
5; 6

.  

 

It is thought that genetic duplication might be the main evolutionary mechanism rewiring 

transcriptional networks
7
,  and could also explain the origin of global and local regulators. In 

particular, Teichmann and Babu 
8
 have proposed that TRNs evolve by duplication of TFs and 

TGs which might conserve their regulation or rather gain new regulatory interactions. Genetic 

duplication indeed accounts for 52% of the TRN in E. coli 
8
. However, Cosentino and 

coworkers 
9
 have concluded that the contribution of this mechanism to the network architecture 

is maximum within local regulators and TGs and otherwise minimal when global TFs are 

considered. Besides, although duplication events have been recognized in many different 

species, TRNs are poorly conserved across bacterial species 
10; 11

 not only because global 

regulators do not necessarily share similar evolutionary histories, but also because they do not 

necessarily regulate similar metabolic responses in different organisms 
3; 12; 13; 14; 15; 16; 17

. 

Therefore, we find that there are still important questions to be answered regarding the evolution 

of regulatory networks. Here we take the two best annotated prokaryotic transcriptional 

networks, the gram-negative Escherichia coli K12 
18

 and the gram-positive Bacillus subtilis 
19

, 

with remarkably different niches 
20

 and evolutionary histories 
21; 22

, in order to address this 
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subject. This work re-evaluates the contribution of genetic duplication, by asking how it is that 

paralogous TFs acquire different roles in regulatory networks. More explicitly, we aim at 

identifying distinctive properties required for TFs to evolve as global or local regulators.  

Firstly, we take the collection of TFs from E. coli and B. subtilis in order to estimate their 

specificity, defined as the ability to discriminate binding sites along DNA molecules. The results 

obtained demonstrate that binding specificity is strongly correlated with the hierarchical role of 

TFs within regulatory networks, with global regulators consistently displaying low specificity 

(LS), while local regulators show high specificity (HS), as already anticipated by different 

groups.  This observation suggests that the ability of TFs to conserve or gain new TGs might 

depend on this biochemical property. In addition, this work finds that regulatory proteins with 

low specificity show higher expression values in microarray experiments, perhaps as expected, 

since they bind to more DNA sites. Furthermore, we find that the degree of co-regulation by 

more than one TF in E. coli is negatively correlated with the specificity of DNA-binding, and 

we discuss several biological processes that might explain this observation. To examine our 

findings, we compare orthologous TFs for which sets of experimentally verified bsDNAs are 

available in both bacteria, with detailed insight into the FNR (fumarate and nitrate reduction) 

regulatory protein, confirming that the calculated specificity values are in agreement with their 

global or local roles. Finally, a general model is presented that summarizes some mechanisms 

that affect how regulons grow and shrink; in other words, how TFs might gain or lose regulatory 

interactions as bacteria tune their regulatory networks in order to better respond to their 

environmental and metabolic requirements. While this paper presents evidence about the 

importance of binding specificity and co-regulation, the model also includes two variables that 

must be involved in this evolutionary process: the rate of genomic mutations and the effectors 

sensed by bacterial TFs. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 5  

 
 

RESULTS AND DISCUSSION 

 

Contribution of genetic duplication to the evolution of transcriptional networks 

There is compelling evidence suggesting that gene duplication is a major force explaining the 

growth of TRNs
8
 and it is also expected that this process will affect the connectivity distribution 

of these networks 
23; 24

, as has been seen in other biological networks. Here, we evaluate this 

hypothesis using data from E. coli and B. subtilis by asking whether there is any coupling 

between the occurrence of TF duplication events and the role of transcription factors within 

regulatory networks. To accomplish this goal it was firstly necessary to classify TFs in terms of 

paralogy. As explained in Materials and Methods, in E. coli we predicted 24 groups of complete 

paralogs from a set of 85 TFs for which, experimentally characterized bsDNAs are available. In 

B. subtilis we found 25 paralogous groups out of 91 TFs. In both cases there were a few TFs 

labeled as singletons, since no duplication evidence was found for them (15 in E. coli and 26 in 

B. subtilis).  

 

Figure 1 tells that duplication events have occurred at all levels of TRNs, although they seem to 

be more frequent towards the low connectivity end of the regulatory hierarchy. This means that 

most TF duplication events have resulted in adding nodes to the base of the network, in 

agreement with recent observations 
9
. Furthermore, this figure shows that most global regulators 

belong to different paralogous groups in the two species subject of this study. With the 

exception of CRP and FNR in E. coli, most global regulators have paralogs in the network, 

which in contrast have local regulatory roles. For instance, ArcA has eight related known TFs in 

the E. coli network, all of them thought to be local regulators. In B. subtilis, CcpA is another 

remarkable example, with five other known regulatory proteins supposed to be paralogously 

related. It is important to note that this methodology relies entirely on finding paralogous TFs 

and cannot separate duplication events from possible horizontal transfer events. 

 

From these results it can be stated that identifying paralogy relationships neither helps 

understanding the role of TFs nor does it explain how network nodes become regulatory targets 

of previously existing TFs. In other words, we still need to know which distinctive properties of 

TFs make them more or less likely to gain or lose regulatory interactions, which is something 
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known to be happening in evolution 
25; 26

. For this reason we focused on TF binding specificity, 

defined here as the ability of DNA-binding proteins to discriminate a small subset of DNA 

sequences from the vast repertoire of sequences found in a genome. There are different ways of 

approximating the specificity of DNA-binding proteins (see for instance 
27; 28; 29

). As explained 

in next section, we tried different measures and obtained compatible results with all of them. 

 

Specificity estimated through the observed diversity of DNA binding sites 

A natural way of estimating the specificity of TFs is shown in Figure 2, provided that 

collections of binding sites are available. The actual property measured is the unadjusted 

information content (UIC) of sequence motifs, which is known to be a valid estimate of the 

relative specificity of DNA-binding proteins
30

, commonly calculated for sequence logo 

representations of binding motifs. Both scatter plots show that the information content of 

sequence motifs is strongly correlated with the number of sites recognized by each TF. In other 

words, translating information content to specificity, proteins able to recognize many DNA sites 

show lower specificity than local regulators, which present high specificity. This result agrees 

with previous observations made by Sengupta and collaborators in E. coli
29

. Since some TFs 

bind only to one or two sites, and others to more than a hundred different genomic positions, 

this variable was log-transformed for convenience. In addition, as sequence motifs have 

different widths, the information content in these figures was normalized by dividing the raw IC 

by the motif width, as explained in Material and Methods. The correlation coefficient obtained 

for the E. coli data was -0.81 (pairs=67, R
2
=0.66, p<10E-

16
); for B. subtilis we also found a 

significant correlation coefficient of -0.81 (pairs=70, R
2
=0.66, p<10E-

17
). The results obtained 

with these two species, only remotely related with each other, suggest that this functional 

correlation between binding specificity and regulon size might be found in other bacterial 

species. However, other variables might be affecting the interpretation of these results as 

discussed in the following paragraph. 

 

For instance, the catalogue of TF binding sites is probably incomplete for most TFs and biased 

towards regulatory proteins that play a role in physiological conditions that are more easily 

reproduced in experimental labs. How would this affect the analysis? We approached this 

question by randomly sampling the collection of available sites in both model organisms. The 
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idea was to repeat the analysis in Figure 2 after 100 rounds of resampling using only 30% of the 

reported sites for each TF. Of course this could only be done for TFs with at least 7 sites, but the 

resulting correlation coefficients are very similar in both species: -0.86 in E. coli (pairs=40, 

R
2
=0.74, p<10E-

12
) and -0.89 in B. subtilis (pairs=34, R

2
=0.79, p<10E-

11
). While this 

experiment shows that the number of available bsDNAs does not change the previously 

observed correlation between regulon size and TF specificity, it also proves that the actual IC 

measurements (i.e. specificities) may change depending on the collection of sites we have at 

hand. As an illustration, inspecting the data in Figure 2 we may conclude that DnaA has an IC 

of 0.71 in E. coli. However, if we take the mean IC after 100 random samples (Table 1) we 

might say that the specificity of DnaA is actually 1.12. If we must take these IC measurements 

as absolute values, then probably it is wiser to take the values compiled after sampling. Table 1 

shows the specificity estimates in Figure 2 next to the mean IC after sampling.  

 

The next variable considered was the geometry of the binding sites. Since TFs can bind to DNA 

in different ways  –i.e as monomers or dimers, with or without spacers-, only the 10 most 

informative columns in each motif were taken in order to calculate the IC, ensuring a fair 

comparison of motifs. This approach would also compensate for potential errors in the 

annotation of motif widths. The analysis on the E. coli dataset yields a correlation coefficient of 

-0.82 (pairs=63, R
2
=0.67, p<10E-

15
). The picture is similar when using B. subtilis data, with a 

correlation coefficient of -0.79 (pairs=27, R
2
=0.63, p<10E-

6
). Again, a very significant 

correlation was found, reinforcing the initial observations. 

 

Finally, we tried to estimate binding specificity using exactly two sites for each TF: the best and 

the worst sites when aligned to the corresponding sequence motif, in the form of a position-

weight matrix. Here, the idea was to approximate the variability of sites recognized by any TF, 

expecting that highly specific proteins would bind to sites with similar scores, while LS 

regulators would recognize a broad range of sites. Thus, we calculated the PWM score 

variability for every TF finding once again significant correlations in both bacterial species with 

respect to the number of binding sites. In B. subtilis we find a correlation coefficient of 0.74 

(pairs=46, R
2
=0.54, p<10E

-8
), compared to a coefficient of 0.91 (pairs=55, R

2
=0.83, p=0) in E. 

coli. It is important to note that the same picture holds when coefficients of variation, less 
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sensitive to outliers, are calculated for each TF. 

 

Diversity of DNA binding structural potentials as a measure of binding specificity 

A rather different method for estimating binding specificity is shown in Figure 3, where the 

crystallographic structures of 11 E. coli protein-DNA complexes were used to thread the 

collection of RegulonDB binding sites for each of them. This collection includes TrpR, Rob, 

PurR, PhoB, NarL, MetJ, MarA, FadR, DnaA, CRP and LacR. As explained in Materials and 

Methods, each sequence was scored in terms of an estimate of the structural binding potential, 

and the observed score diversity plotted against the number of recognized binding sites. Despite 

the small number of complexes available, we observe a correlation coefficient of 0.92 (pairs=11, 

R
2
=0.85, p=0.0004) between connectivity and the observed energy variability, supporting the 

hypothesis that global regulators are able to bind a larger collection of sites, at the cost of being 

less specific. These results provide new insights into the molecular recognition of DNA binding 

sites, suggesting that the array of interface contacts between protein and DNA counterparts, as 

captured in crystallographic complexes, can be utilized in order to estimate the specificity of 

TFs. Unfortunately, we cannot perform this analysis on B. subtilis due to the lack of structural 

data. 

 

Contact-based estimations of binding specificity 

Inspired by a previous work by Luscombe 
31

, we attempted to classify TFs according to their 

ratio of specific to non-specific protein-DNA contacts. A key difference in this approach is that 

no binding site knowledge is used. Instead, a large collection of protein-DNA complexes is 

required in order to build comparative models of TFs, which are then used to identify amino 

acid residues that are likely to contact nitrogen bases at the interface (specific contacts), as 

opposed to non-specific contacts, that usually include phosphate and sugar atoms. Despite the 

fact that this approach ignores indirect DNA readout mechanisms, it was used to estimate the 

specificity of 82 transcription factors (49 from E. coli and 33 from B. subtilis), yielding no 

correlation between contact-based specificity and connectivity, presumably as a result of using 

approximate theoretical models, instead of crystallographic structures. However, global TFs 

display low specificities and therefore these somewhat low-resolution results give further 

support to our previous observations and are important as they show that similar conclusions 
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might be reached using different data sources. 

 

Adding co-regulation to binding specificity 

So far these results suggest that highly connected TFs, those expected to have a larger impact on 

regulation, display relatively low binding specificities. However, by analyzing the curated data 

in RegulonDB 
18

 a more complex picture emerges, since a large fraction of E. coli promoters are 

subject to regulation by several TFs. Therefore, we should be studying binding specificity in the 

context of combinatorial regulation 
32

 (no such data is currently available for B. subtilis). Figure 

4 shows a scatter plot of the number of co-regulators of TFs and the number of target genes in E. 

coli, revealing a correlation coefficient of 0.94 (pairs=153, R
2
=0.90, p=0). This clearly means 

that highly connected TFs, those that seem to be less able to discriminate DNA sequences, co-

regulate more often than other TFs.  

However, can this distribution of co-regulating TFs be explained in terms of random 

combinations? Well, we find that 839/2861 (29%) of E. coli genes are subject to regulation by 

only one transcription factor. Conversely, 71% of the total number of genes is found to be 

regulated by two or more TFs. We can take these proportions in order to calculate the expected 

number of co-regulated TGs for any one TF. Consider the transcription factor NarL, known to 

be affecting the expression of 98 target genes. We should expect that around 70 of those genes 

are co-regulated by other TFs. However, RegulonDB tells that 96 of those TGs are actually co-

regulated. What does this difference mean? If this calculation is done with all TFs in E. coli we 

fill a table and can then calculate the statistical significance of the differences between the 

expected and the observed co-regulation frequencies by means of a χ
2
 test. Using this test we 

find a very small probability (p<10E-
7
) that the observed differences happen by chance (if we 

take all TFs with 5 or more expected co-regulated TGs the probability is still p<10E-
7
). Please 

note that most global regulatory proteins (with the exception of FIS) actually co-regulate more 

genes than could be expected by chance.  

Since we have shown that highly connected TFs are less specific, these results can be interpreted 

as a sort of compensation mechanism: low specificity regulators have regulatory partners and 

even if can potentially bind to many DNA sequences, they will still need nearby co-regulating 

proteins in order to have an influence over transcription at several levels of the regulatory 

network. However, there are alternate ways of reading these results. Let us consider catabolite 
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repression, which involves the preferential use of certain carbon sources over others when a 

mixture of them is available to the microorganism for growth, by means of co-regulation 

mechanisms
33

. In E. coli, the transcriptional regulation of catabolite repression is carried out by 

CRP, a global regulator showing a low specificity (sampled normUIC values of 0.39); however, 

83% of its TGs are co-regulated by other TFs. This high rate of co-regulation may be 

understood by at least three mechanisms. Firstly, when complexed with its effector cAMP, CRP 

binds to binding sites in the promoter of some TGs, interacting directly with RNA polymerase 

to initiate transcription
34

. Secondly, suboptimal cAMP-CRP binding sites may also be targeted 

by CRP homologues responding to other signals, for example the redox-sensor FNR, and vice 

versa, thus permitting a degree of cross-talk between bsDNAs belonging to promoters 

controlled by proteins of the same family 
35

. Thirdly, the cAMP-CRP complex may also interact 

with promoter-specific TFs, such as the nucleoside-regulator CytR, increasing the DNA-binding 

specificity of its co-regulator i) by providing additional contacts through its surface, ii) by 

creating a DNA conformation that is better recognized by the co-regulator, or iii) by inducing a 

conformational change in the co-regulator that promotes its interaction with the bsDNA
36; 37

. To 

summarize, the complexity of co-regulation in prokaryotes prevents the formulation of a more 

general hypothesis that would explain the observed correlation with binding specificity, 

particularly when bacterial regulators usually include, apart from the DNA-binding domain, an 

effector-sensing domain that responds to particular ecological cues. 

 

Low specificity transcription factors show high expression levels  

Different sources of evidence presented here suggest that binding specificity is an important 

property of transcription factors that might help explain their biology. One arising prediction is 

that LS regulatory proteins are more likely to bind to genomic DNA sites, since their repertoire 

of recognized sequences is comparatively larger. However, the concentration of these proteins 

must also be considered, as this will ultimately limit the number of genomic sites bound 
38

. The 

set of microarray experiments collected by Faith 
39

 allows us to check this prediction in E. coli, 

as they provide data for 60 non-redundant conditions. Indeed these data seem to support this 

hypothesis, as shown in Figure 5, in which mean normalized expression values for E. coli 

transcription factors are plotted against their number of reported binding sites, with a significant 

correlation coefficient of 0.66 (pairs=65, R
2
=0.43, p<10E-

8
). This scatter plot shows that 
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regulators such as CRP, with 207 binding sites reported in the genome, are expressed at higher 

levels than AraC, with only 13 sites reported. This coupling between mRNA expression levels 

and regulon size is a novel observation in bacteria, and was also predicted, although with little 

support from the data, in recent experiments in yeast 
40

. However, this can only be indirect 

evidence, since we can merely infer transcription levels, not protein concentrations. Additional 

data, such as the rate of occupation of operator sites in the genome, would be required to further 

test the hypothesis. 

 

DNA-binding specificity of orthologous transcription factors in E. coli and B. subtilis 

The use of two bacterial models with remarkably different life styles 
20

 and long phylogenetic 

distance 
21; 22

 gives us the opportunity to explore our findings by comparing orthologous TFs. As 

listed in Table 2, we found eight pairs of orthologous TFs with two or more experimentally 

verified DNA binding sites. Here we examine these orthologous pairs in order to test whether 

global and local TFs really exhibit different specificities that can be compared across species. If 

we skip Lrp, a global regulatory protein in E. coli for which only one binding site is available in 

B. subtilis (AzlB), it is found that in 5 out of 7 cases the specificity estimates are congruent, as 

lower values correspond to more binding sites. The values for DnaA are not congruent, but in 

both genomes it is clearly a very high specific transcription factor, with values greater than 1.1.  

However, CytR and CcpA have very similar specificity values in both species while the regulon 

sizes are 10 and 48, respectively. We now look at these examples with more detail.  

 

The first cases are LexA and DnaA, two regulators that respond to DNA cleavage in both 

bacteria and bind DNA with high specificity, suggesting that indeed are local TFs with similar 

roles in different genomes. The second case is Fur, a local regulator in E. coli and B. subtilils 

that coordinates the expression of iron uptake and homeostasis pathways in response to 

available iron 41; 42; 43. Fur shows high specificity values in both organisms, as expected for such 

a specialized regulatory role. 

 

The next cases are two orthologous TFs that are part of two-component regulatory systems. The 

first system, CpxR (CpxA) in E. coli, responds to several conditions associated with envelope 

stress, such as alkaline pH and overproduction of secreted proteins, and also to attachment of 
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cells to surfaces or the assembly of structures on the cell surface, folding or degradation of 

misfolded proteins in the periplasm and pili subunits as well as monitoring of porin status 
44

. 

This system also responds to exposure to copper
45
 and EDTA

46
 in E. coli, while its B. subtilis 

counterpart YycF (YycG) is involved in the control of genes for cell wall metabolic processes, 

cell membrane composition and cell division
47

. The second, PhoB (PhoR), regulates the 

phosphate regulon in E. coli
48

, while its counterpart in B. subtilis, ResD (ResE), is involved in 

nitrate respiration in response to oxygen limitation or nitric oxide 
49

. Both orthologous TFs have 

high specificity values, as expected for local regulators, even when they can respond to different 

effectors. 

 

The remaining orthologous TFs have different positional roles in both organisms. Let us first see 

CcpA, which is a global regulator in B. subtilis, controlling carbon catabolite repression (as CRP 

in E. coli) 
50

 with a specificity estimate of 0.88, while the orthologous CytR, a local regulator in 

E. coli 
37

, has a similar specificity value of 0.85. As mentioned earlier, these appear to be 

incongruent specificity estimates, as CcpA is known to bind to 48 sites, while CytR binds to 10. 

However, it should be mentioned that CytR, in co-regulation with CRP, has been described as 

the most promiscuous DNA-binder of the LacI familiy
37

.  

 

Finally, we analyze the transcription factor FNR (fumarate and nitrate reduction), a global TF in 

E. coli (FNReco) which is local in B. subtilis (FNRbsu). FNReco has been extensively annotated in 

RegulonDB, while Reents and coworkers have been exhaustively studied the FNRbsu regulon via 

transcriptomic analysis in combination with bioinformatics-based binding site prediction 
16

. 

From 35 TGs identified as part of the FNR regulon during the transition of B. subtilis to 

anaerobic growth conditions, only eight genes are seen to be directly regulated via a cis-acting 

FNRbsu box in the corresponding promoter regions as demonstrated previously by Cruz-Ramos 

and coworkers via construction of fusions and mutant strains 
51; 52

. Indeed, the red dots in the 

Figures 2 show that FNR is relatively low specific in E. coli (sampled normUIC values of 0.63 

for FNReco and 1.38 for FNRbsu), in agreement with the fact that FNR regulates a much larger set 

of genes in E. coli than in B. subtilis. The amino acid residues presumed to be recognizing 

specific FNR sites change from E. coli to B. subtilis, and as a consequence the sequence logos 

are partially different. However, we still ignore why this protein, that senses O2 via a Cysteine-
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[4Fe-4S]
2+

 cluster located in the amino terminus in FNReco 
53

 and the carboxyl terminus in 

FNRbsu 
16

, has a major regulatory role in E. coli and only a minor effect in the TRN of B. subtilis 

(see Table 2). We believe that the answer to this question lies on the ecological niches of both 

bacteria. E. coli has adapted to live inside the host’s gut and must be able to grow rapidly in the 

ileum under aerobic conditions but also in competition for limited nutrients under anaerobic 

conditions in the colon 
54

. Therefore, it seems that shifting between these two environments is 

part of the species lifestyle, and FNR regulates this by affecting the expression of 135 genes in 

E. coli 
18

. In contrast, B. subtilis usually dwells in the soil, where fluctuations in the availability 

of oxygen are not that frequent or periodic, depending mostly on the soil’s water content 
20

. 

Presumably this is why in this species FNR regulates the transcription of only 8 genes required 

for adaptation to low oxygen tension 
16; 19

. 

 

To summarize, although orthologous proteins are generally thought to have the same function in 

different species, it has been previously reported that TFs are not conserved between 

phylogenetically distant species, specially the global regulators, that are gained or lost rapidly 

through evolution 
10; 11; 55

. Even in small phylogenetic distances, such as Proteobacteria for E. 

coli or Firmicutes for B. subtilis, it has been found that global regulators do not necessarily 

share similar evolutionary histories nor they regulate similar metabolic responses
3; 12; 13; 14; 15; 16; 

17
. In this section we have presented a DNA-binding specificity assessment of the set of 

orthologous TFs present in E. coli and B. subtilis, suggesting that the correlations described 

throughout the paper can be of practical use for the task of characterizing the role of regulatory 

proteins in prokaryotes. Our data allows us to claim that it is possible to infer the function of a 

TF as global or local if we can confidently measure its binding specificity. However, the DNA-

binding domain can only tell us about one half of the evolutionary and functional history of a 

bacterial TF. The sensing/allosteric domain is most likely the result of several evolutionary 

processes, perhaps dominated by the environmental relevance of the corresponding effector, as 

illustrated by the FNR analysis. In some cases, the evolutionary history of allosteric domains 

might be a much better guide in order to define the functional role of a TF, as perhaps the cases 

of CytR and CpxR suggest. 

 

A conceptual model for the evolution of transcriptional regulatory networks 
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The presented results provide a picture of bacterial regulatory networks in which binding 

specificity is a predictor of the hierarchy of any TF. Our data suggest that the ability of TFs to 

conserve or gain new TGs is not inherited from their paralogous counterparts, but it is at least 

correlated to their power to discriminate DNA sequences. Here we approximated the specificity 

of transcription factors using three different approaches, observing that global regulators 

(including nucleoid-associated proteins
56

) from two bacterial models with remarkably different 

life styles and long phylogenetic distance consistently display low binding specificities, and that 

specificity values of most orthologous TFs between E. coli and B. subtilis are congruent with 

their global or local role. We have also found that low specificity regulators are transcribed at 

relative high levels in E. coli, perhaps as a consequence of these proteins not being co-localized 

with their TGs in the genome, suggesting that an efficient occupancy of binding sites may be 

achieved by high copy number instead 
38; 40; 57

. In addition, it is clear from Figure 4 that less 

specific TFs have more co-regulators, other TFs that help translate their global control to more 

specialized subsets of target genes, adding one more variable to this evolutionary scenario. 

However, it seems obvious that other variables will be conditioning the evolution of regulatory 

networks. Of special interest are variables that might be restricting or enhancing the ability of 

TFs to gain, conserve or even lose regulatory interactions. 

For instance, the mechanisms that generate or delete genomic binding sites should also be 

considered to fully understand this question, as already envisaged by Sengupta and 

collaborators
29

. In this respect, Figure 6 shows a scatter plot of the theoretically estimated 

probability of site generation and the number of cognate binding sites of transcription factors in 

both E. coli and B. subtilis, predicting that LS regulators are more likely to bind to DNA sites 

appearing as a result of point mutations. A protein such as CRP, able to recognize 90 different 

oligonucleotides, will bind a randomly generated sequence with a probability roughly two 

orders of magnitude larger than CaiF, able to discriminate only 2 sequences. A different view to 

the same numbers could be that poor DNA sequence discriminators, with large sets of targets 

genes, are less vulnerable to random genomic mutations, since more mutations are needed to 

disable a binding site. Moreover, it should be noted that bacterial genomes are plastic and 

experience genomic rearrangements that modify the composition and orientation of operons, 

providing means for creating or destroying binding sites beyond point mutations
27; 58

. Our 

specificity estimations might be indicating that local regulators, in evolutionary time scales, are 
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more likely to gain binding sites as a result of such genomic rearrangement events. However, 

this hypothesis would require further testing and we have no direct evidence supporting it. 

 

In addition, as bacterial regulators usually include a signal-sensing allosteric domain, it is likely 

that the metabolic and ecological relevance of these effectors will largely affect the evolution of 

TFs and their regulons. In other words, as introduced in the previous section, the evolutionary 

fate of transcription factors will depend on both the DNA-binding and the allosteric domains. 

We anticipate two ways in which sensing domains might have and impact over the network 

evolution. Firsty, they might induce conformational changes on the attached DNA-binding 

domains upon binding of effector molecules. For instance, it has been demonstrated that CRP 

increases its specificity after binding to cyclic AMP molecules
34

. Similar evidence has been 

found for LacI
59

 or Cbl
60

. In this sense, it seems that allosteric domains might be regulating 

specificity, somewhat compensating the intrinsic promiscuity of some DNA-binding domains. 

Secondly, not all signals sensed by regulatory proteins are equally relevant for the species 

adaptation, nor they evenly describe the species’s ecological niche. This conceptual model 

predicts that TFs are more likely to conserve or gain new target genes if they increase adaptation 

by logically linking allosteric effectors to the expression of new regulatory targets or operons.. 

In summary, the model in Figure 7 attempts to summarize the evolutionary variables that make 

regulons grow and shrink between species, such as FNR in E. coli and B. subtilis, as bacteria 

tune their regulatory networks in order to better respond to their environment and their 

metabolic requirements. 

 

 

 

 

MATERIALS AND METHODS 

 

Regulatory network collection 

We downloaded the transcriptional regulatory interactions of E. coli K12 from RegulonDB 

release 5.5 
18

. We also obtained the regulatory interactions of B. subtilis from the Database of 

transcriptional regulation in B. subtilis (DBTBS) release 4.1 
19

. Both databases compile 
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experimental information curated from the literature. We considered only regulatory interactions 

where the DNA binding sites have been experimentally characterized. For E. coli we collected a 

total of 85 transcription factors regulating 1593 target genes through 1314 DNA binding sites, 

while we collected a total of 91 TFs regulating 732 TGs through 944 bsDNA in B. subtilis (see 

Table S1 from Supplementary Material). 

 

Detection of paralogy and orthology of transcription factors 

Search of paralogues 

In order to detect possible TF duplication events in the genomes of E. coli and B. subtilis, 

we used both sequence and three-dimensional structural domain assignments of the proteins in 

the network as a measure of paralogy. Therefore, if two proteins had exactly the same domain 

composition and the same number of domains, we assumed that they were derived from genetic 

duplication of a common ancestor. As bacterial regulators usually have at least two protein 

domains, conservation of the DNA-binding domain was not considered sufficient to detect 

paralogy. We defined domains according to the structural annotation system of the 

SUPERFAMILY database 
61

, based on the domain classification scheme of SCOP 
62

, and 

according to the sequence annotations of the PFAM database 
63

. Both assignment schemes rely 

on the use of libraries of hidden Markov models (HMM) to represent domains. 

We searched for protein domains in the complete genomes of E. coli and B. subtilis using 

HMMs taken from PFAM version 20.0 and SUPERFAMILY version 1.69, using the HMMER 

2.3.1 program 
64

 with an expectation value ≤ 10
-3

. This cut-off value has been used previously to 

define TFs families in bacteria 
3; 65; 66

, although it is less stringent than the E-value ≤10
-4

 used to 

reduce the total number of superfamilies assigned to major clades (Archaea, Bacteria, and 

Eukarya) by Yang and co-workers 
21

. E-values here also serve as a confidence level for every 

candidate identified as a paralogue within an organism. 

Thus, we predict groups of paralogues that include the set of 85 know TFs and 1593 TGs of 

E. coli from RegulonDB release 5.5 and the set of 91 know TFs and 732 TGs of B. subtilis from 

BDTBS release 4.1. In order to group putative paralogous regulatory proteins, we required that 

each group included the same resulting members after both PFAM and SUPERFAMILY 

domain assignments, except in the cases of seven E. coli and one B. subtilis TFs that have no 

SUPERFAMILY assignments with our cut-off value. In those cases only PFAM assignments 
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were considered in order to group them. 

 

Search of orthologues 

The search for orthologues was carried out as reported previously 
10

, assigning functional 

roles to TFs in other genomes by first filtering intraspecific paralogues and then using an 

intersection of three criteria for the detection of orthology: (i) bi-directional best hits (BDBHs), 

(ii) coverage of BLASTP 
67

 pairwise alignments and (iii) conservation of PFAM domains. 

Accordingly, we identified orthologues as pairs of B. subtilis and E. coli proteins that satisfy the 

following conditions: 

(i) Sequences of the target genome that have a BDBH in the query genome with a 

significant BLASTP E-value (<10
-3

). 

(ii) At least 70% of the query sequence is included in the BLASTP alignment. 

(iii) Target sequences share the PFAM domains of their query counterparts. Target 

sequences having one or more domains which match the orientation and arrangement 

to that of the query sequence and do not increment the total size of the protein in 

more than 100 residues were also considered in the analysis. 

 

 

 

Estimation of transcription factor specificity based on the information content of DNA 

sequence motifs 

Here we describe a way to estimate the observed DNA binding specificity of transcription 

factors for which we have at least two experimentally characterized binding sites. The process is 

essentially the same for our two bacterial datasets, with minor differences justified by the 

different annotation detail of E. coli and B. subtilis sites. 

 

For E. coli we had a collection of 67 TFs with at least 2 reported sites, with 25 having more than 

10 annotated sites. We used the computer program CONSENSUS 
68

 to build optimized 

sequence motifs with equiprobable prior nucleotide frequencies. We used the motif widths 

defined in RegulonDB 5.5 for each TF. CONSENSUS returns the unadjusted information 

content for each motif (UIC), that can be width-normalized so that different motifs can be 
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directly compared, using the expression ICnorm = IC / width. This is necessary as the motifs used 

in this work have widths that range from 7 (for instance NarL) to more than 20, and this variable 

ultimately limits the information content of motifs.   

 

For B. subtilis we had a collection of 70 TFs with a minimum of 2 known sites, of which 23 

have more than 10 associated sites, all extracted from DBTBS 4.1. Since sites for the same TF 

can have different widths in this data source, we used the program WCONSENSUS 
68

 to build 

sequence motifs with a prior %GC content of 43. This program attempts to find the optimal 

motif width in terms of information content.  

 

In order to estimate the variability of scores for sites recognized by every TF we took the 

position weight matrices (PWM) generated by CONSENSUS (E. coli) and WCONSENSUS (B. 

subtilis) and aligned all available sites for each TF against them, by running the program 

PATSER 
68

 and recording the scores. The highest and lowest scores were kept, as well as the 

standard deviation, and the variability calculated with Equation 1: 

 

variability(scores) = max(scores) – min(scores) / standard_dev(scores)                    (Equation 1) 

 

Note that these variability measurements are normalized by the standard deviation of  scores for 

a given TF, so they are comparable for different TFs.  

 

Estimation of transcription factor specificity by estimating DNA binding potential 

A modified version of the DNASITE program 
69

, that uses full atom detail and identifies 

hydrogen bonds and hydrophobic interactions, was used to estimate DNA-binding potentials 

(manuscript under review). Briefly, the program threads experimentally characterized DNA 

binding sites from RegulonDB 5.5 into crystallographic protein-DNA complexes for 11 

transcription factors in E. coli and scores each site using H-bond and Van der Waals weight 

matrices. These matrices give log-likelihood scores to pairs of interacting atoms in the protein-

DNA interface and were compiled on a set of non-redundant protein-DNA complexes. The sum 

of weights over a protein-DNA interface, linearly combined with indirect readout DNA 

deformation, is regarded as the potential of binding of a given site. As before, we calculate score 
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variability for a TF using Equation 1. These are the eleven TFs used here, with the number of 

binding sites for each indicated in parenthesis: TrpR (10), Rob (6), PurR (15), PhoB (16), NarL 

(73), MetJ (23), MarA (13), FadR (10), DnaA (8), CRP (182) and LacR (3). The list of 

corresponding Protein Data Bank complexes is: 1TRO 
70

, 1D5Y 
71

, 2PUA 
72

, 1GXP 
73

, 1JE8 
74

, 

1CMA 
75

, 1XS9 
76

, 1H9T 
77

, 1J1V 
78

, 1CGP 
79

 and 1EFA 
80

.  

 

 

Estimation of mean expression values from microarray experiments 

A set of 60 published non-redundant expression profiles for E. coli was provided by the authors 

39
, already normalized using the robust multi-array analysis (RMA) procedure, that allows direct 

comparisons between them. Most of these conditions are independent single-gene over-

expression experiments. The mean expression value across 60 conditions was then calculated 

for all those E. coli transcription factors for which an information content estimate of specificity 

was available, to produce the scatter plot shown in Figure  7. 

 

Calculation of correlation coefficients  

All correlation coefficients mentioned in this paper correspond to Pearson coefficients 

calculated using the function cor.test in the R package for statistical computing (http://www.r-

project.org/).  

 

Calculation of probabilities of site generation 

The collection of binding sites for every TF was aligned using CONSENSUS with a fixed motif 

width of 10 columns, to make them all directly comparable. Alignments are then parsed in order 

to count the number of different sites of length 10 found, a number called diffN, that is an 

approximation of the sequence space recognized by any TF. The probability of generating sites 

for any one TF is then calculated by dividing diffN by 4
10

, the total number of possible 

oligonucleotides of that length. 

 

 

Online Supplementary Material:  http://www.eead.csic.es/compbio/suppl/prok_specificity/ 
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 FIGURE LEGENDS 

 

Figure 1. Paralogous groups of transcriptions factors in the TRNs from E. coli (a) and B. 

subtilis (b). Global regulators are on the top row while local regulators are in the bottom. Black 

lines indicate directed transcriptional regulation between TFs, only for cases with evidence 

reported in RegulonDB and DBTBS. 24 paralogous families for E. coli and 25 for B. subtilis are 

circumscribed in shady rectangles in the figure. Paralogous families involving global regulators 

are shown as yellow ovals. Paralogous groups in which only one member of the family has 

experimental evidence are shown as green ovals. Finally, 15 TFs in E. coli and 26 TFs in B. 

subtilis predicted to be singletons, with no paralogous copies in the genome, are shown as blue 

ovals. This figure highlights the importance of duplication/horizontal transfer events across 

regulatory networks, since there are many paralogous groups. Note that several global regulators 

in both species either are part of groups in which other TFs are not global or are singletons (i.e. 

CodY and ComK in B. subtilis). This is important as it shows that recognizing paralogy gives 

little information about the evolutionary fate of TFs. 

  

Figure 2. Scatter plot of normalized information content versus number of binding sites in 

E. coli (a) and B. subtilis (b). A linear fit is also plotted to illustrate the observed correlation 

coefficients of -0.81. The red dot highlights FNR, a protein that regulates respiration in both 

species, being labeled as global in E. coli (a) and as local in B. subtilis (b). 

 

Figure 3. Scatter plot of binding energy variability versus log (number of binding sites), 

obtained from 11 E. coli TF-DNA complexes. The most variable transcription factor is CRP, 

whilst the most specific regulators are LacR and Rob.  

 

Figure 4. Scatter plot of co-regulators versus the number of regulated target genes in E. coli 

for each transcription factor. Data was taken from RegulonDB 5.5, removing regulatory 

interactions without experimentally-determined binding sites associated to them. 
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Figure 5. Mean expression value of E. coli transcription factors (across 60 non-redundant 

microarray experiments) plotted versus the number of reported binding sites within the 

genome. As expected, in general local regulators are relatively less expressed when compared to 

global regulators.  

 

Figure 6. Theoretical estimates of the probability of random generation of genomic 

binding sites in E. coli (A) and B. subtilis (B). Note that probabilities vary up to two orders of 

magnitude between specific and low specific DNA binders. 

 

Figure 7. Evolutionary model for regulatory networks.  

This plot shows variables that affect the evolution of transcriptions factors and their regulons. 

Two main variables are considered here, binding specificity and frequency of co-regulation, 

normalized in a [0-1] scale. Note that a scatter plot of these two variables clearly separates 

global transcription factors (plotted in red) from the other regulatory proteins, highlighting their 

potential diagnostic value. The subplot B summarizes the main observations of this paper, 

together with a theoretical variable that is not easily measured, effector relevance, that we 

anticipate can play an important role here. The model proposes to use the degree of co-

regulation as an indirect measure of effector relevance, similarly to mutation resistance, which is 

represented as being inversely proportional to binding specificity. This evolutionary model lets 

us more realistically define the functional (global or local) role for any TF as a function of 

different evolutionary forces, rather than isolated properties that can misestimate the importance 

of TFs. 

 

 

The subplot in the left bottom corner summarizes the main observations of this paper, together 

with a theoretical variable that is not easily measured, effector relevance, that we anticipate can 

play an important role here. Similarly to mutation resistance, which is represented as being 

inversely proportional to binding specificity, the model proposes to use the degree of co-

regulation as an indirect measure of effector relevance.   

potential diagnostic value. The subplot in the left bottom corner summarizes the main 

observations of this paper, together with a theoretical variable that is not easily measured, 
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effector relevance, that we anticipate can play an important role here. The model proposes to use 

the degree of co-regulation as an indirect measure of effector relevance. Similarly to mutation 

resistance which is represented as being inversely proportional to binding specificity. This 

evolutionary model can let us define the functional (global or local) role for any TF from more 

realistic situations by considering the role TF as a function of different evolutionary forces, 

rather than isolated properties that can overestimate/underestimate the function of a TF in the 

TRNs. 
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